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INTRODUCTION 

Polynomial regression is a methodology used to fit curvilinear models to a set of obser- 
vations. These curvilinear models fit into the framework of the general linear model and, hence, 
can usually be fit to the data using any general multiple regression program. Two such programs 
are currently available through the Mathematical Statistics Staff, viz. GEMREG (GEneral 
Multiple REGession)* and DA-MRCA (DAhlgren Multiple Regression and Correlation 
Analysis).** Both provide least squares estimates of the regression coefficients, analysis of 
variance tables, and a variety of user-controlled options. These programs hinge on the assumptions 
that the error terms (differences between the observed and predicted values of the dependent 
variable) can be assumed to have zero expectation, the same variance for all observations, and 
zero correlation. When these last two assumptions for the error terms are not met, the usual 
least squares method is not applicable; instead, a weighted least squares procedure is required. 

Programs WEPOR and WEPOR2 (WEighted Polynomial Regression) use this weighted least 
squares procedure to estimate regression coefficients for models with one independent variable. 
Program WEPOR handles the case in which the error terms have different variances but are 
uncorrelated, whereas WEPOR2 deals with the problem of different variances and correlated 
error terms. Output for both programs includes ANOVA (ANalysis Of VAriance) tables, pre- 
dicted values of the dependent variable and the associated residuals, and confidence limits for 
selected synthetic points. The values for bounds on the entire curve generated from the input 
data are written on output files for use with DISSPLA (Display Integrated Software System and 
Plotting LAnguage).1^ An example of a program that uses the output from WEPOR and 
DISSPLA features to plot sample points, the regression curve, and confidence and prediction 
limits is program LIMITS. 

*Taub, A. E., and M. A. Thomas, GEMREG - A General Multiple Regression Program, NSWC TN 81-298, (Dahlgren, Va., 1981). 

"♦AM, K., G. Gemmill,   T. Herring, and R. Shade, DA-MRCA:   A Fortran IV Program for Multiple Linear Regression, NSWC 
TR-2035, (Dahlgren, Va., 1966). 

tlntegrated Software Systems Corporation (ISSCO), Display Integrated Software System and Plotting Language, 1SSCO (San 
Diego, Calif., 1970). 



THE MODEL 

The polynomial regression model with a single variable has form 

yi = ^+/31xi + /?2xi
2 + ... + /jkxf+ei) i= 1,2, ...n. (1) 

In this model, Xj is the value of the independent variable associated with the ith response value 
(yj), n is the number of observations, k is the order of the polynomial, j3. is the jth regression 
coefficient, and ^ is the ith random error. The inclusion of e in the model accounts for the 
fact that the response variable y is a random variable and, hence, the relationship between the 
response variable and the independent variable is not an exact functional relationship. 

Polynomial models fit into the framework of the general linear model 

yi = ^0+^1Xli + /S2X2i + ... + |3kXkl + ei, i = 1,2, ... n (2) 

and, hence, can usually be fit to data using any general multiple regression program provided 
that the Qi can be assumed to have zero expectation, the same variance a2 for all i, and be 
uncorrelated. These assumptions can be expressed in a more compact form if the model is 
written in matrix notation: 

y = X/3 + e. (3) 

In the general context of model (2), y is an n x 1 vector of observations, j3 is a (k + 1) x 1 
vector of regression coefficients, e is an n x 1 vector of random errors, and 

X 
n x (k+ 1) 

i   xn   x21 

1      X12     X2 2 

1    X,      X, In 2n 

"kl 

X k2 

X kn 



Since model (1) is a special case of model (2), the appropriate X for (1) is obtained by 
letting Xk. = XJS In this notation, the expectation of the e. and their variance-covariance 
matrix can be denoted by E(e) and Var(e), respectively. Hence, if the e. are assumed to have 
zero expectation, this is denoted by E(e) = 0. Also if the e. are assumed to be uncorrelated 
with the same variance, this is denoted by Var(e) = a21 where I is the n x n identity matrix. 
In regression applications, the assumption E(e) = 0^ does not present any difficulty. However, 
the assumption Var(e) = o21 cannot always be met and, hence, poses a serious problem if not 
handled properly. In this case, the variance-covariance matrix is denoted by Var(e) = a2V 
where V is an n x n positive definite matrix. 

An example of a regression application where Var(e) =£ a21 involves regressing projectile 
seating distances (y) on given barrel life (x) expressed in percent expended. Here, the variation 
in seating distance increases with the percent expended barrel life. Hence, the assumption of 
equal variances does not hold, and the usual least squares regression is not applicable. Cases of 
this land and more complicated situations where the errors are correlated can be handled by a 
modified least squares procedure known as weighted least squares. This procedure is discussed 
by Draper and Smith,* and much of the development that follows is based on their discussion. 

When the aforementioned assumptions are satisified, the usual least squares pro- 
cedure provides a vector of estimates of the regression coefficients that has the form 

|-b = (X'Xr1 X'y. (4) 

The weighted least squares procedure amounts to transforming the dependent or response 
variable y to another variable that does satisfy the assumptions. The usual (unweighted) least 
squares analysis is then applied to the new variable, and the estimates so obtained are reexpress- 
ed in terms of the original variable y. This process is examined in details in the ensuing para- 
graphs. 

Consider the original model (Equation 3) with assumptions E(e) = 0 and Var(e) = a2V 
(vice a21). Since V is positive definite, it is possible to find an upper triangular matrix P such 
that P'P = V. (Draper and Smith indicate that it is possible to find a unique nonsingular 
symmetric matrix P such that P'P = PP = P2 = V. We have not found this to be the case, nor is 
such a requirement necessary in what follows.) 

*Draper, N. R. and H. Smith, Applied Regression Analysis (New York, N.Y.: John Wiley & Sons, Inc., 1966), pp. 77-81. 
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If the model in Equation 3 is premultiplied by (P')"1, a new model is generated in the 
form 

(P')-1   y =  (p')-l   X^+CPT'C (5) 

Since 

E [(P'r^e]   =  (PT1 E(e) = (P')"1 0 = 0 

and 

Var [(P'r1^] = E[(P'r1_ec^ P"1] = (P')"1 E(c c^P"1 

=(P')-i VP"1 a1 

= (PT1 (P'P)P-1 a2 

= lo2, 

the new model meets the assumptions required for the ordinary least squares procedure. This 
new model can be written in matrix notation as 

z = Ql + i (6) 

where z = (P')-1 y, Q = (P')"1 X, and f = (P')-1 e. 

4 



THE ANALYSIS 

The error term _f in the revised model in Equation 6 satisfies the assumptions for the usual 
least squares analysis. Therefore, the usual analysis will be applied to the revised model. 
Estimation of the regression coefficients will be dealt with first. These estimates are obtained 
by writing the solution vector in Equation 4 in terms of the new parameters in Equation 6. 
This provides 

b= (Q'Qr1 Q' z (7) 

Reexpressmg Q and z in terms of the original model parameters provides 

b= [(x'p-Map'r1 x)]-1 (x'p-Map'r1 y) 

[X' (P'P)-1 X]-1 XCP'P)-1 y 

= (X' WX)-1 X' Wy (8) 

In this expression, W is the inverse of V; i.e., W = (P'P) 1 = V 

This solution has the same form as Equation 4, except for the insertion of W, the weighting 
matrix. The new model has an implied zero intercept, since the Q matrix does not have a 
leading column of ones. Hence, the entries in the analysis of variance table for the new model 
are computed in a slightly different manner from those obtained when ordinary least squares 
procedures are used. Table 1 shows the breakdown of the degrees of freedom and formulae 
needed to compute the sums of squares for a first degree polynomial. 



Table 1.   Analysis of Variance Table for First Degree Polynomial 

Source Sums of Squares 

^0 
(2(qo)izi)

2/Z(qo)i
2 

<*, ^ b'X'Wy- SS05o) 

Error y' Wy - b'X'Wy 

Total y'Wy (= z' z) 

Degrees of Freedom 

n-2 

n 

In this table, (qo)i is the ith element of the first column in the Q matrix [Q = (P ) 1  X]. 

When several observations are taken at the same level of the independent variable, the 
error sum of squares in Table 1 can be broken into components for lack of fit and pure error. 
From Equations 5 and 6, we have 

z = (P'r1 y 

where z' = (z , z , ... z ). A change in the subscript of the z's produces 
'1'    2 

' ^Zll' Z12' Zln1' 
Z21 Z2n    '   •• Zki' Zk2' "' ^n. ^ 2 k 

where the first Uj values are associated with the first level of the independent variable, the next 
n2 values are associated with the second level, and so on. With this notation, the sum of squares 
for pure error is computed by 

k n; 
"% l2 SSCPO^X; £   (z^-z.) 

i=i j=i 

r- 
/ I1i \2 

k 

E 
i=l 

ni 

E ^ )
2- 

£ 
\:=i 

z.. 
y 

/ 

n (9) 

with degrees of freedom u = £   n- - k. 
i=l 



The sum of squares for lack of fit can then be obtained by subtraction; i.e., 

SS(lf) = SSE - SS(pe) 

where SSE is the error sums of squares from Table 1. 

Confidence Umits on the expected value of y and prediction limits on the mean of m future 
observations of y differ only slightly in weighted regression from unweighted regression. The value 
of the independent variable X used in forming the limits is referred to as the synthetic point. 
Letting x* denote the synthetic point associated with X and (x*)' = (1, x*, (x*)2, ... (x*)k) for 
a kth degree polynomial, 

(x*)'b = bo +b1x* + b2(x*)2 +...+ bk(x*)k 

is a point estimate of the expected value of y and of a single future observation when X = x*. 
In the unweighted case, the 100(1 - a) percent confidence limits on E(y) when X = x* are 

(■**)'**%,l-al2  ^((X^'CX'X)-1^*)]1/2 . (10) 

In the weighted case, X'X is replaced with X' WX yielding 

(x^'bit,!^^ [s2((x*)'(X'WXr1 x*)]I/2   • (11) 

In these expressions, t^ j,^ is the 100 (1 - a/2) percentage point for a t distribution with v 
degree of freedom where u is associated with the error mean square in the analysis of variance 

table. This error mean square is denoted by s2 above and is obtained by dividing the error sums 
of squares (SSE) by u, the associated degrees of freedom; i.e., s2 = SSE/y. 

The prediction limits for the mean of m future observations at X = x* is, in the un- 
weighted case, given by 

(x*)' b ± tU) x_al2 [s2(^ + (x*)' (X'X)"1 x*)],/2   . (12) 

For the weighted case, X'X is changed as above yielding 

(x*)' b ± t,,   i_tt/2 [s2( -  + (x*)' (X'WX)"1 x*)]1/z . -      -        •        / m       _ _ (13) 



PROGRAM ORGANIZATION 

Program WEPOR is actually the main driving routine that calls a series of first level 
subroutines to perform various tasks. 

First, subroutine IOP is called to read in parameters for user-specified input and output 
options, viz., a title for the execution, the number of observations, the desired degree of the 
polynomial model to be fit to the data, and a parameter specifying whether or not confidence 
and prediction limits are requested. The printing of these limits requires the further input 
of the number of future observations on which the prediction limits are based, and the number 
of synthetic points to be read in if the levels of x to be used for the limits are different from 
those in the original data. The validity of each parameter is checked and, should inconsistencies 
be detected, either a default value is substituted or an error message printed and execution 
halted. 

Subroutine READIN is called to read in the raw input data and the array of weights 
corresponding to the diagional elements of the matrix W = V"1 (recall that program WEPOR 
assumes uncorrelated error terms; should correlations exist, program WEPOR2 should be used 
and the entire matrix V is read in at this point). The required matrix P, where (P'P)~1 = W, is 
computed at this time. If V is a diagonal matrix, the elements of P"1 are calculated by simply 
taking the square root of the corresponding elements of W. In the case where V is non- 
diagonal, P is obtained by performing a matrix decomposition on V using the square root 
method. The total sum of squares and sum of squares due to pure error are also computed. The 
raw data points are saved on TAPE10. 

For each stage of development in the model, subroutine REGRESS is called to compute 
and print a set of regression coefficients, the additional sum of squares to be included in the 
regression sum of squares, and the residual sum of squares and F statistic for the current model. 

Subroutine TABLE prints two analysis of variance tables: one shows the breakdown of 
the residual sum of squares into components of pure error and lack of fit and the other table 
shows the contribution made by each term in the model to the overall regression sum of 
squares. This subroutine also prints the raw input data, estimated values for the dependent 
variable, and residuals. 

If the user has requested confidence and prediction limits, subroutine SYNTH performs 
the necessary calculations. If the user has specified that a new set of levels for x. are to be used 

instead of those from the original data set, these new levels are read in from the input file. 

The confidence and prediction limits are printed and are also saved on TAPE 11 and TAPE 12, 
respectively. 
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Some of these first level subroutines reference routines found in the NSWC/DL Library of 
Mathematics Subroutines:* CROUT, which inverts general real matrices, and MPROD and 

TMPROD, which perfonn matrix multiplication operations. Routine QSORT from the User's 
Guide for the CDC 6700 Computing System** is used to arrange the levels of the independent 
variable in ascending order. Subroutine FINDT, used to estimate the critical t value for con- 
fidence and prediction units, is adapted from a similar routine in program GEMREG.^ 

EXAMPLE 

For the apphcation of projectile seating distance (psd) expressed as a function of percent 
gun barrel life expended, the following independent and uncorrelated pairs of data points were 
used to derive a first degree polynomial. 

Percent Barrel Life psd 
Expended (m) 

0 39.82 
0 39.71 

10 41.13 
10 41.10 
30 43.52 
30 43.90 
60 48.05 
60 46.31 
75 47.23 
75 48.68 

Although the weight associated with each level of the independent variable is the inverse 
of the variance for the response variable at that level, these variances are unknowns. Estimates 
based on the above data and data from previous experiments were used to construct the follow- 
ing weights'. 

*Morrison, Alfred H. Jr., NSWC/DL Library of Mathematics Subroutines, NSWC TR 81-410 (Dahlgren, Va., 1981). 

**User's Guide for the CDC 6700 Computing System, NSWC TR-3228 (Dahlgren, Va., 1974). 

'Taub, A. E. and M. A. Thomas, 1981. 



Value of Independent 
Variable Weight 

0 12.50 
10 10.00 
30 5.00 
60 1.40 
75 1.25 

Appendix A provides the input guide for execution of programs WEPOR and WEPOR2. 
The actual cards used for this example are shown in Appendix B. 

Computation of the estimates for the regression parameters requires Equation 8: 

b = (X'WXr1 X'Wy 

where 

X = 

1      0. 12.5 0 
1      0. 0 12 5 
1     10. . 10. 
1     10. 
1    30. ,W = 
1     30. 
1     60. 
1     60. 
1     75. 
1     75. ^ ( ) 

10.0 

25 
25 

and y = 

39.82 

39.71 

41.13 

41.10 

43.52 

43.90 

48.05 

46.31 

47.23 

48.68 
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The following matrix operations are required before proceeding: 

(X'WX) 60.30 
855.50 

855 
35142 

.501 

.50j 

(x'wxr1 = [- 2.5 X lO-2 

6.2 X lO"4 
-6.1 X lO-4"! 
4.35 X lO"5 :] 

(X'Wy) T 2505.521- 
[38253.80] 

Recall that there  exists a matrix P such that (P'pr1 = W. The vector ^= (P')-1 y is then 
computed 

125    0 
o vrn 

z   = 

TO 
vToo 

v^o 
vTo . 

vT4 
VIA 

.V\ 

o 

25 

vT 25 

39.82 140.78 
39.71 140.40 
41.13 130.06 
41.10 129.97 
43.52 = 97.32 
43.90 98.16 
48.05 57.43 

46.31 55.35 
47.23 52.80 
48.68 54.43 

—       —            

* For the sake cf clarity, rounded values will be given for the results of matrix operations. 
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Similarly, the vector q , which is equal to the first column in the Q matrix (= (P') 1 X), is 
found to be 

% = 

v/123 

v/Too 

V51T 
VTA 
VIA 

v/05 
VOS 

The vector of estimates for the regression parameters, vector b, is therefore equal to 

b = (X'WX)-1 X'Wy 
39.88 

0.12 

This result is found on the first page of the printout (Appendix B, page B-4). For the analysis 
of variance tables printed on pages two and three of the printout (pages B-4, B-5), the follow- 
ing operations are performed: 

SSR   =   b' (X' Wy)   =   104424.89 

SS (V = ( E K\ Zi)2/E   (^o),2   =   104106.35 
i=l i=l 

SS03. 1/3 )   =   SSR  -   SS(i3 )   =   318.54 1 "o 

SS Total = y'Wy =   z'z  =   104431.63 

SSE  =   SS Total - SSR  =   6.74 

12 



Since each level of the independent variable has two observations associated with it, Equa- 
tion 9 for computing the sum of squares due to pure error can be written as 

SS (pe) = £   £   (zy - z.)2 

i-1    j=l 

and is found to be 3.87. Finally, 

SS(lf) = SSE -  SS(pe) = 2.87. 

Page two of the printout (page B-4) shows the analysis of the variance table, including a 
breakdown of the error sum of squares into the sum of squares due to pure error and lack of 
fit. The associated degrees of freedom and mean squares are printed for the regression and error 
terms. 

The F statistic to test the lack of fit component [F = MS(lf)/MS(pe)] is 1.23. This result 
is less than 5.41, the critical F value for a = 0.05 with degrees of freedom 3 and 5, and 
indicates that the first degree polynomial model chosen is not inadequate at the 0.05 level. 

On the third page of the printout (page B-5) is an analysis of variance table that shows 
the contribution made by each term in the model. The sum of squares due to regression is 
determined for polynominals of degree from 0 (j3o only in model) to the full model chosen. At 
each stage, the additional sum of squares is computed and stored for use in this table. 

The sum of squares represented by X**0 is that associated with the regression model 
having only |3o in it [SS03o)]. In our example, this value is 104106.35. The nth sum of squares 
listed, X**n, represents the additional sum of squares obtained by adding j3 to the model 
that already contains j3o, ^ ... j3n_1 and can be computed as follows: 

ss(/3ni/3o, (ivp2 ... z^) = ss(0o, ^ ... /jn) - sso3o, ^ ... p^y. 

In this example, 

SStf^pJ = SS(0o, P^ - SS(/J0) 

or 318.54= 104424.89- 104106.35. 

The column with the heading "F Statistics - MSR/MSE" shows the values of the F test for 
the model £t each stage of development. 

13 



The fourth page of the printout lists the case numbers, values x. of the independent 
variable, observed values y. of the dependent variable, the estimated values y. for the de- 

pendent variable based on the full regression equation, and the residuals y. - y. (page B-5). 

As in this example, the error terms were presumed to be uncorrelated, which indicates a 

diagonal covariance matrix V. Therefore, only the array of weights read in as part of the input 
and representing the diagonal elements of W = V-1 are printed with their associated cases. If 
the error terms had not been assumed to be uncorrelated, the lower triangular position of W 
would also have been printed. 

The minimum and maximum absolute residuals (min |y. - y.| and max |y. - y.|) are also 
provided. 

The user has the option of requesting confidence limits at the lOOy percent level, where 
I-7 is specified by the user. These limits may be placed about the estimated values y. for the 
original levels of X or for up to 100 other synthetic points. 

At the same time, IOO7 percent prediction limits, based on the predicted mean of m new 
observations at the same levels of X as used for the confidence limits may be requested. The 
value of m is also user provided. Pages five and six of the printout show 95-percent confidence 
and prediction limits using the original input values for the levels of X. The prediction limits 
are based on the predicted value of a single future observation at each level of X. 
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APPENDIX A 

INPUT GUIDE FOR WEPOR AND WEPOR2 

A-l 



Input Guide for WEPOR and WEPOR2 

Card No. Variable Description Columns     Format 

ITITLE Title for run 1-80 8A10 

NOBS Number of observations 1-5 15 

NOBS> 0 data on cards 
NOBS < 0 data on TAPES (Must 

be attached prior to execution) 

WEPOR: 2 < | NOBS | < 750 
WEPOR2:  2 < |  NOBS | < |   100 

KMAX Desired degree of polynomial model 6-10 15 

COPT Confidence/prediction limit option 11-15 15 
COPT = 0 no intervals 

= 1 confidence intervals only 

= 2 confidence and prediction intervals 
Default:  0 

3 NPTS Number of synthetic points for 
(used only if confidence/prediction limits 
COPT = 1,2) NPTS = 0 use original x. values 

1-5 15 

NPTS <  100 

AR AR = ( 1 - 7) for 1 OOy percent limits 
0 < AR <  1.0 

Default: 0.05 

6-10 F5.2 

A-3 



Card No. 

4 

5 

6 

7 

Variable 

M 

Description Columns     Format 

Number of future observations 
prediction limits based on 
Default:   1 

FORM1 Format used to read in (x,y) pairs 

X Independent variable level 

Y Dependent variable observation 

(Repeat Card 5 as needed) 

FORM2 Format used to read in "weights" 

WEPOR:W     Array of weights (diagonal 
elements of W = V"') 

WEPOR2:V   Covariance matrix 

8 XPTS 
(used only if 
COPT= 1,2 
and NPTS > 0) 

(Repeat Card 7 as needed) 

Synthetic points - - levels of 
independent variable 

10-15   15 

1-80    8A10 

FORM1 

FORM1 

1-80    8A10 

FORM2 

FORM2 

FORM! 

A-4 



APPENDIX B 

SAMPLE INPUT AND OUTPUT FOR WEPOR AND WEPOR2 

B-l 
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APPENDIX C 

SAMPLE PLOTS PRODUCED BY PROGRAM LIMITS 
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Program LIMITS uses the graphics package DISSPLA (Reference 3 in text) to plot the 
confidence and prediction limits generated by programs WEPOR and WEPOR2. Local files 
produced by these two programs and used as input for LIMITS are TAPE 10 (raw data), TAPE11 
(confidence limits), and TAPE12 (prediction limits). Figures C-l and C-2 were drawn using the 
results of the example discussed on page 9. 
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Figure C-l.   95-Percent Confidence Limits: Projectile Seating Distance Expressed as a Function of 

Percent Gun Barrel Life Expended 
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Figure C-20.   95-PercentlPrediction Limits: Projectile Seating Distance Expressed as a Function 

of Percent Gun Barrel Life Expended 
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